Intra-Inversion Filtering for Use of Magnetic Fields to Locate and Characterize Magnetic Dipoles for UXO Cleanup

MR-1452

Objective

An impediment to the success of unexploded ordnance (UXO) magnetic field surveys is the interference of target magnetic anomalies by background fields, including overlapping fields of neighboring shallow-sourced anomalies. The standard procedure is to apply a pre-inversion filter that attenuates some components of the background field, but leaves the target anomalies without appreciable distortion so that they can be input to full point-dipole inversion. Pre-inversion filtering, especially the de-median filter, is a valuable tool, but unfortunately, without distortion of the target anomalies, significant background fields and overlapping anomalies inevitably remain to hamper inversion or even detection of target anomalies due to UXO or clutter.

The objective of this project was to develop high-pass intra-inversion filtering (IIF) as a new method to improve inversion of magnetic anomalies in UXO magnetic field surveys. IIF allows accurate inversion of UXO magnetic anomalies in the presence of low-frequency background fields and overlapping anomalies of neighboring UXO and clutter.

Back to Top

Technical Approach

IIF, as developed for this project, takes the approach that a target anomaly can be severely distorted yet the filtered magnetic field data can be input to full point-dipole inversion with accurate recovery of all of the point-dipole parameters that are valuable to the analysis that follows. It accomplishes this task by high-pass filtering with a digital filter and then applying that exact same filter to the test models’ fields used internal to the inversion algorithm. In the case of the least-squares inversion scheme used in this project, the IIF is applied to the fields of three coincident unit-dipoles at each possible depth for all-node inversions or at each possible dipole location for flag-node inversions.

Back to Top

Results

IIF was applied to anomalies in the Blind Test Area of the UXO Standardized Test Site located at Aberdeen Proving Ground, Maryland, wherein clutter and UXO (actually inert ordnance) were emplaced at various depths and inclinations. The results demonstrate that IIF significantly improves the accuracy of inversions of magnetic anomalies in UXO magnetic field surveys.

Researchers also unexpectedly invented the edge-adaptive gapped gradient-nulling (EAGGN) filter. This new filter automatically accommodates data gaps, survey edges and corners, flag-node data, single swaths of towed-array data, and restrictions of the filter input to any desired data window.

Back to Top

Benefits

UXO cleanup costs are reduced by proper characterization of magnetic sources to distinguish UXO from some non-UXO sources. Accurate and efficient inversion of magnetic survey data ultimately will save excavation costs.

Back to Top

Project Documents

Points of Contact

Principal Investigator

Dr. Raymond Rene

Rene Geophysics

Phone: 812-333-5127

Fax: 812-333-5127

Program Manager

Munitions Response

SERDP and ESTCP

Project Documents

Document Types

  • Fact Sheet - Brief project summary with links to related documents and points of contact.
  • Final Report - Comprehensive report for every completed SERDP and ESTCP project that contains all technical results.
  • Cost & Performance Report - Overview of ESTCP demonstration activities, results, and conclusions, standardized to facilitate implementation decisions.
  • Technical Report - Additional interim reports, laboratory reports, demonstration reports, and technology survey reports.
  • Guidance - Instructional information on technical topics such as protocols and user’s guides.
  • Workshop Report - Summary of workshop discussion and findings.
  • Multimedia - On demand videos, animations, and webcasts highlighting featured initiatives or technologies.
  • Model/Software - Computer programs and applications available for download.
  • Database - Digitally organized collection of data available to search and access.