High Sensitivity Magnetoresistive Sensors for DC and EMI Magnetic Field Mapping

MR-1716

Objective

The current magnetic sensors that are used to detect unexploded ordnance (UXO) and discarded military munitions (DMM) are bulky and require relatively large spacing (0.25 to 0.5 m). Some of these sensor systems are capable of dual-mode operation; however, they are only of limited frequency range (typical <20 kHz). Developing an advanced magnetics sensor array is important for classification of smaller (less than 37 mm projectiles), deep targets or multiple targets.

The objective of this project was to investigate a lightweight, low-power, compact, practical highsensitivity magnetic sensor system suitable for both DC and wide frequency band electromagnetic induction (EMI) magnetic field mapping based on solid-state magnetic tunneling junction (MTJ) devices with a sensitivity in a few tenth picotesla (~ 10-12 tesla) range.

Back to Top

Technical Approach

The technical goals for the MTJ sensor were to:

  • Develop three-axis vector capability
  • Detect UXO targets to the depth of interest (1-2 meters)
  • Characterize target shape
  • Reduce false alarm rate

Back to Top

Results

The researchers proved the feasibility of developing a magnesium oxide (MgO)-based MTJ sensor – its impulse response to a primary pulse field decaying from a peak field of 0.1 mT to 100 pT within 100 µs measurement of standard target response.

The MgO based MTJ with a magnetoresistance (MR) ratio as high as 250% has been achieved. This sensor has a sensitivity as high as 4703% per mT. The magnetic sensor only dissipates 1 mW of power while operating under 1 V.

It is evident that the tunneling magnetoresistance (TMR) sensor measures the expected target response from a simulated UXO object. The sensor shows response as early as 10 µs following the transmit pulse, but with less than perfect signal-to-noise ratio (SNR) on the edges of the test grid. This early time data could be useful for detection of small objects, provided they are within the inner (high SNR) region of the transmit coil. Through further improvements of the sensor, anti-pulse coil and possibly transient recovery of the transmitter it may be possible to improve the “edge” SNR of the early time data. At 300 µs, the signal matches the model with excellent agreement, SNR is > 200 and the background subtraction is well behaved.

Back to Top

Benefits

A high bandwidth, low power, light weight, high sensitivity and low cost sensor can provide enhancements to the probability of detection and discrimination of small UXO items and for applications in difficult geology, terrain and complex ordnance and clutter distributions. The magnetic sensor can also be used in other applications such as vehicle surveillance and orientation control.

Back to Top

Points of Contact

Principal Investigator

Dr. Sy-Hwang Liou

University of Nebraska

Phone: 402-472-2405

Fax: 402-472-2879

Program Manager

Munitions Response

SERDP and ESTCP

Document Types

  • Fact Sheet - Brief project summary with links to related documents and points of contact.
  • Final Report - Comprehensive report for every completed SERDP and ESTCP project that contains all technical results.
  • Cost & Performance Report - Overview of ESTCP demonstration activities, results, and conclusions, standardized to facilitate implementation decisions.
  • Technical Report - Additional interim reports, laboratory reports, demonstration reports, and technology survey reports.
  • Guidance - Instructional information on technical topics such as protocols and user’s guides.
  • Workshop Report - Summary of workshop discussion and findings.
  • Multimedia - On demand videos, animations, and webcasts highlighting featured initiatives or technologies.
  • Model/Software - Computer programs and applications available for download.
  • Database - Digitally organized collection of data available to search and access.