- Program Areas
- Energy and Water
- Environmental Restoration
- Munitions Response
- Resource Conservation and Climate Change
- Weapons Systems and Platforms
Compressor Airfoil Protective Coatings for Turbine Engine Fuel Efficiency
WP-201009
Objective
The objective of this project is to demonstrate potential fuel savings on fixed wing (transport and fighter aircraft) and ground vehicle weapon system platforms operating with an erosion-corrosion (E/C) resistant coating on compressor airfoils via model analysis, simulation/laboratory testing, and field service evaluation.
Technology Description
The E/C resistant coating is a multilayer ceramic-metallic matrix that is applied in a vacuum via a cathodic arc, physical vapor deposition (CAPVD) process. Design elements in the coating allow it to survive in the austere environments of a gas turbine engine and withstand specific failure mechanisms. The E/C resistant coating applied to stainless steel compressor airfoils is the first coating known in the industry to successfully pass corrosion tests on a repeatable basis while effectively providing erosion protection. The coatings for the transport aircraft will undergo field service evaluations comparing the performance of coated engines to uncoated engines. The coating for tank engines will undergo a back-to-back engine sand ingestion test. Laboratory erosion testing followed by computer performance modeling comparisons of coated and uncoated engines will be conducted on the fixed-wing engine applications. The fighter, fixed-wing engine will rely solely on modeling and analyses based on field data to determine potential fuel savings for aircraft such as the F/A-18.
Interim Results
This project will demonstrate E/C resistant coatings applied to gas turbine engine compressor airfoils that can decrease fuel consumption, lower carbon emissions, and decrease maintenance support requirements across fixed-wing and land-based weapon system platforms. Fuel savings ranging from 1% to 5%, a two-fold increase in time-on-wing, and a 5% to 10% decrease in carbon emissions can potentially be realized across these platforms. (Anticipated Project Completion - 2013)
Points of Contact
Principal Investigator
Mr. Greg Kilchenstein
Office of the Secretary of Defense (L&MR) MPP
Phone: 703-614-0862
Document Types
- Fact Sheet - Brief project summary with links to related documents and points of contact.
- Final Report - Comprehensive report for every completed SERDP and ESTCP project that contains all technical results.
- Cost & Performance Report - Overview of ESTCP demonstration activities, results, and conclusions, standardized to facilitate implementation decisions.
- Technical Report - Additional interim reports, laboratory reports, demonstration reports, and technology survey reports.
- Guidance - Instructional information on technical topics such as protocols and user’s guides.
- Workshop Report - Summary of workshop discussion and findings.
- Multimedia - On demand videos, animations, and webcasts highlighting featured initiatives or technologies.
- Model/Software - Computer programs and applications available for download.
- Database - Digitally organized collection of data available to search and access.
